Categories: Lab Chemical-60
Images: Alt
Product Short Description: KARL FISCHER REAGENT Pyridine Free
Product Description:

The pyridine-free Karl Fischer reagent consists of two solutions, a dissolving agent and a titrating agent. The dissolving agent contains sulfur dioxide and a pyridine substitute in a solvent and is used for taking up the sample to be investigated with respect to its water content.

Product Application:

An essentially pyridine-free Karl Fischer reagent useful in the determination of water, comprising a dissolving agent containing sulfur dioxide and a pyridine substitute in a Karl Fischer solvent, and a titrating agent containing iodine in a Karl Fischer solvent, wherein the pyridine substitute is an alkali or alkaline.

Product Dose:

Karl Fischer Reagent (Pyridine free). single soln for titrimetric determination of water 1 ml reagent ~5 mg water.

Product Note:

The analysis of the water content of a sample by Karl Fisher titration can be carried out using a volumetric method or a coulometric one.

Product Technical Specification:
Remarks:
Karl Fischer titration is simply a method for quantifying water content of samples. The fundamental principle behind this reaction is based on the Bunsen reaction between compounds such as iodine, sulphur dioxide to form sulphuric acid and hydrogen iodide. Karl Fischer initiated a new method based on Bunsen’s reaction. He discovered that the reaction could be modified for determining water in a non-aqueous system containing an excess of sulphur dioxide in the presence of a suitable base. He used a primary alcohol (methanol) as the solvent and a base (pyridine) as the buffering agent.
 
What is the Karl Fischer Reaction?
(1) CH3OH + SO2 + RN [RNH]SO3CH3
 
Reaction-1:  is where the alcohol reacts with sulphur dioxide (SO2) and base to form an intermediate alkylsulfite salt
 
(2) H2O + I2 + [RNH]SO3CH3 + 2RN [RNH]SO4CH3 + 2[RNH]I
 
Reaction-2: is the oxidation step where the intermediate is then oxidised to an alkylsulphate salt. This reaction consumes water.

Water and iodine are consumed in a 1:1 ratio. Once all of the water present is consumed, the presence of excess iodine is detected by the indicator electrode. That signals the end-point of the titration. The amount of water present in the sample is calculated based on the concentration of iodine in the Karl Fisher titrating reagent and the amount of Karl Fisher Reagent consumed in the titration. Depending on the type of base used the rate of reaction will vary. Classic Karl Fischer reagents contained pyridine, a noxious carcinogen, as the base. Due to its weak basicity the reaction is slow and the end point is not stable. The most common base used today is imidazole where greatest accuracy and repeatability can be achieved. Coulometry is an absolute technique so standardisation of Karl Fischer reagents is not necessary.
 
 
Coulometric Titration Method
In coulometric Karl Fischer, iodine is generated electrochemically in situ during the titration.
The anolyte contains iodide, sulphur dioxide, bases and solvents such as methanol. Electrolytic oxidation occurs when a sample is added to this anolyte.
Iodine is generated at the anode of the titration cell as shown in formula (3)
(3) 2I--2e ---> I2
Stoichiometrically, 1 mole of water will react with 1 mole of iodine, so that 1 milligram of water is equivalent to 10⋅71 coulombs of electricity
prod_useful_area:
Product Supply Location:
[KARL FISCHER REAGENT Pyridine Free] manufacturers, suppliers, exporters in Mumbai, Gandhidham, Kolkata, Varanasi, Visakhapatnam, Chennai, Fujairah, Dubai, Canada BC, Barka, Sohar, Muscat, Oman.
Lab chemicals manufacturers, suppliers, exporters in India, UAE Middle East, Barka, Sohar, Muscat, Oman, Canada.
 
[KARL FISCHER REAGENT Pyridine Free] is available in small packing as well as in bulk. Buy premium quality [KARL FISCHER REAGENT Pyridine Free] and other lab chemicals from one of the most trusted brands.
stock-clearance.png