Product Code: RXSOL-10-1769-025
NOTE : Acts as an acid-neutralizing agent.
We are RXSOL-10-1769-025 Heavy Duty DG-30 Degreasermanufacturers in india. And holding no-1 position for RXSOL-10-1769-025 Heavy Duty DG-30 Degreaser Cleaners suppliers in kandla, mundra, chennai, ennore, vizag, kakinada, jnpt, manglore, kolkata, haldia, paradip, dubai, fujairah, sharjah. Alkaleen Liquid Heavy Duty concentration makes surface clean easily and effectively.

Product Code: RXSOL-90-8150-025
| Property | Value |
|---|---|
| Appearance | Milky white liquid |
| Odor | Mild / characteristic |
| pH (as supplied) | 6.0 – 8.0 |
| Density @ 25 °C | 0.97 – 1.02 g/cm³ |
| Solubility | Dispersible in water |
| Flash Point | Not applicable (water-based) |
| Freezing Point | ~0 °C |
Key Features of RXSOL Mold Release Agent Emulsion

Product Code: RXSOL-68-6832-025
BEST BEFORE USE: 2 year from month of manufacturing.
RXSOL Electrolytic Degreaser Powder is alkaline in nature. Aprons, gloves, goggles and boots should be used while handling these products. Splashed on the skin should be washed-off with water. In case of splashing into the eyes, flush it out with water and obtain medical attention.
DISPOSAL : The waste is strongly alkaline and may be neutralised in the effluent treatment plant by using derusting or pickling waste or by mineral acids. After neutralising, the supernatant liquid may be discharged while the sludge may be dumped under ground.

Product Code: RXSOL-19-3786-050

Product Code: RXSOL-27-4004-025
| Property | Typical Value | Test Method |
|---|---|---|
| Appearance | Clear, green liquid | Visual |
| Odor | Odorless | Sensory |
| Density (25 °C) | 1.05 – 1.15 g/cm³ | ASTM D4052 |
| pH (25 °C) | 7.0 – 9.0 | ASTM E70 |
| Boiling Point | ≥ 100 °C | ASTM D1120 |
| Thermal Conductivity | Enhanced vs pure water | ASTM D5470 |
| Flash Point | Non-flammable | ASTM D92 |
| Electrical Conductivity | Low (controlled) | ASTM D1125 |

Product Code: RXSOL-68-6830-025
| Parameters | Value |
|---|---|
| Appearance | Clear, Liquid |
| Odor | Charateristic |
| pH | 1-2 |
| Solubility | Highly miscible |
| Density | >1.2 |
Some key features of RXSOL Offshore Descaler

Product Code: RXSOL-33-6005-100
| Appearance | Clear, Yellowish Amber Liquid |
| Flash point | Non-flammable |
| pH | Alkaline |
| Solubility in water | Soluble in all proportions |
| Freezing Point | -15 Degree |
SAFETY INFORMATION:
Gloves and goggles should be worn as a precaution when handling the concentrated solution. (See Material Safety Data Sheets for further information).
SAFETY INFORMATION:
Gloves and goggles should be worn as a precaution when handling the concentrated solution. (See Material Safety Data Sheets for further information).
Antiscalant 4101 is compatible with carbon steel and other commonly used materials of construction. Observe all safety precautions shown in the material safety data sheet, available on request.

Product Code: RXSOL-46-3269-050
Penta sodium salt of Amino Trimethylene Phosphonic Acid (ATMP.5Na). ATMP.5Na is the salt of ATMP, it can inhibit calcium carbonate particularly in water treatment system . ATMP.5Na can be used in circulating cool system in power plant, oil refinery plant and oilfield refill water system . ATMP.5Na is a general low cost scale inhibitor, it has good corrosion inhibition to zinc salt and phosphate, its chelating ability is good as well
ATMP.5Na is used together with other organophosphonic acid, polycarboxylic acid or salt to form organic alkaline agents.
ATMP.5Na can be used in circulating cool water system for all water quality
At high concentration, it has good corrosion inhibition. ATMP is used in industrial circulating cool water system and
oilfield water pipeline in fields of thermal power plant and oil refinery plant. ATMP can decrease scale formation and
inhibit corrosion of metal equipment and pipeline. ATMP can be used as chelating agent in woven and dyeing industries and
as metal surface treatment agent. The solid state of ATMP is crystal powder, soluble in water, easily deliquescence,
suitable for usage in winter and freezing districts. Because of its high purity, it can be used in woven & dyeing industries and
as metal surface treatment agent. ATMP has excellent chelation, low threshold inhibition and lattice distortion ability.
It can prevent scale formation, calcium carbonate in particular, in water system. ATMP has good chemical stability and is hard to be
hydrolyzed in water system. At high concentration, it has good corrosion inhibition. ATMP is used in industrial circulating cool water system
and oilfield water pipeline in fields of thermal power plant and oil refinery plant. ATMP can decrease scale formation and inhibit corrosion of
metal equipment and pipeline. ATMP can be used as chelating agent in woven and dyeing industries and as metal surface treatment agent.
The solid state of ATMP is crystal powder, soluble in water, easily deliquescence, suitable for usage in winter and freezing districts.
Because of its high purity, it can be used in woven & dyeing industries and as metal surface treatment agent

Product Code: RXSOL-46-3269-270
ATMP.5Na is the salt of ATMP, it can inhibit calcium carbonate particularly in water treatment system .
ATMP.5Na can be used in circulating cool system in power plant, oil refinery plant and oilfield refill water system.

Product Code: RXSOL-43-1011-025
An advanced, water-based rust remover formulated to eliminate iron oxide deposits from diesel cooling water systems. Its formulation penetrates and dissolves stubborn rust and scale while dispersing loosened contaminants for effective removal. During cleaning, it forms a temporary passivating film that protects base metals from flash corrosion. The product ensures safe, efficient maintenance without strong odors or flammability risks.

Product Code: RXSOL-23-1305-026
Oxygen Control
Chemical Oxygen Scavengers. The oxygen scavengers most commonly used in boiler systems are sodium sulfite, sodium bisulfite, hydrazine, catalyzed versions of the sulfites and hydrazine, and organic oxygen scavengers, such as hydroquinone and ascorbate.
It is of critical importance to select and properly use the best chemical oxygen scavenger for a given system. Major factors that determine the best oxygen scavenger for a particular application include reaction speed, residence time in the system, operating temperature and pressure, and feedwater pH. Interferences with the scavenger/oxygen reaction, decomposition products, and reactions with metals in the system are also important factors. Other contributing factors include the use of feedwater for attemperation, the presence of economizers in the system, and the end use of the steam. Chemical oxygen scavengers should be fed to allow ample time for the scavenger/oxygen reaction to occur. The deaerator storage system and the feedwater storage tank are commonly used feed points.
In boilers operating below 1,000 psig, sodium sulfite and a concentrated liquid solution of catalyzed sodium bisulfite are the most commonly used materials for chemical deaeration due to low cost and ease of handling and testing. The oxygen scavenging property of sodium sulfite is illustrated by the following reaction:
| 2Na2SO3 | + | O2 | ® | 2Na2SO4 |
| sodium Sulfite | oxygen | sodium sulfate |
Theoretically, 7.88 ppm of chemically pure sodium sulfite is required to remove 1.0 ppm of dissolved oxygen. However, due to the use of technical grades of sodium sulfite, combined with handling and blowdown losses during normal plant operation, approximately 10 lb of sodium sulfite per pound of oxygen is usually required. The concentration of excess sulfite maintained in the feedwater or boiler water also affects the sulfite requirement.
Sodium sulfite must be fed continuously for maximum oxygen removal. Usually, the most suitable point of application is the drop leg between the deaerator and the storage compartment. Where hot process softeners are followed by hot zeolite units, an additional feed is recommended at the filter effluent of the hot process units (prior to the zeolite softeners) to protect the ion exchange resin and softener shells.
As with any oxygen scavenging reaction, many factors affect the speed of the sulfite-oxygen reaction. These factors include temperature, pH, initial concentration of oxygen scavenger, initial concentration of dissolved oxygen, and catalytic or inhibiting effects. The most important factor is temperature. As temperature increases, reaction time decreases; in general, every 18°F increase in temperature doubles reaction speed. At temperatures of 212°F and above, the reaction is rapid. Overfeed of sodium sulfite also increases reaction rate. The reaction proceeds most rapidly at pH values in the range of 8.5-10.0.
The following operational conditions necessitate the use of catalyzed sodium sulfite:
High feedwater sulfite residuals and pH values above 8.5 should be maintained in the feedwater to help protect the economizer from oxygen attack.
Some natural waters contain materials that can inhibit the oxygen/sulfite reaction. For example, trace organic materials in a surface supply used for makeup water can reduce speed of scavenger/oxygen reaction time. The same problem can occur where contaminated condensate is used as a portion of the boiler feedwater. The organic materials complex metals (natural or formulated catalysts) and prevent them from increasing the rate of reaction.
Sodium sulfite must be fed where it will not contaminate feedwater to be used for attemporation or desuperheating. This prevents the addition of solids to the steam.
At operating pressures of 1,000 psig and higher, hydrazine or organic oxygen scavengers are normally used in place of sulfite. In these applications, the increased dissolved solids contributed by sodium sulfate (the product of the sodium sulfite-oxygen reaction) can become a significant problem. Also, sulfite decomposes in high-pressure boilers to form sulfur dioxide (SO2) and hydrogen sulfide (H2S). Both of these gases can cause corrosion in the return condensate system and have been reported to contribute to stress corrosion cracking in turbines. Hydrazine has been used for years as an oxygen scavenger in high-pressure systems and other systems in which sulfite materials cannot be used. Hydrazine is a reducing agent that removes dissolved oxygen by the following reaction:
| N2H4 | + | O2 | ® | 2H2O | + | N2 |
| hydrazine | oxygen | water | nitrogen |
Because the products of this reaction are water and nitrogen, the reaction adds no solids to the boiler water. The decomposition products of hydrazine are ammonia and nitrogen. Decomposition begins at approximately 400°F and is rapid at 600°F. The alkaline ammonia does not attack steel. However, if enough ammonia and oxygen are present together, copper alloy corrosion increases. Close control of the hydrazine feed rate can limit the concentration of ammonia in the steam and minimize the danger of attack on copper-bearing alloys. The ammonia also neutralizes carbon dioxide and reduces the return line corrosion caused by carbon dioxide.
Hydrazine is a toxic material and must be handled with extreme care. Because the material is a suspected carcinogen, federally published guidelines must be followed for handling and reporting. Because pure hydrazine has a low flash point, a 35% solution with a flash point of greater than 200°F is usually used. Theoretically, 1.0 ppm of hydrazine is required to react with 1.0 ppm of dissolved oxygen. However, in practice 1.5-2.0 parts of hydrazine are required per part of oxygen.
The factors that influence the reaction time of sodium sulfite also apply to other oxygen scavengers. Rate of reaction as a function of temperature and hydrazine concentration. The reaction is also dependent upon pH (the optimum pH range is 9.0-10.0)

Product Code: RXSOL-41-5046-025
